Data Centers

The coronavirus presents an unprecedented challenge for scientists worldwide.

But this is what the world’s fastest supercomputer was built for.  Summit, IBM’s supercomputer equipped with the “brain of AI,” ran thousands of simulations to analyze which drug compounds might effectively stop the virus from infecting host cells.

The supercomputer identified 77 of them. It’s a promising step toward creating the most effective treatment.

Researchers at Oak Ridge National Laboratory published their findings in the journal ChemRxiv

The Purpose

Summit was commissioned by the US Department of Energy in 2014 for the purpose it’s serving now — solving the world’s problems.

It’s got the power of 200 petaflops, which means it has the computing speed of 200 quadrillion calculations per second, aka: It’s 1 million times more powerful than the fastest laptop.

Summit, the worlds most powerful supercomputer, discovered how different drug compounds might prevent the coronavirus from spreading and corrupting other cells.

At its station in Oak Ridge National Laboratory in Tennessee, Summit has identified patterns in cellular systems that precede Alzheimer’s, analyzed genes that contribute to traits like opioid addiction and predicted extreme weather based on climate simulations.

How It Works

The supercomputer “Summit” ran simulations of over 8,000 compounds that could bind to the spike protein of the virus, which could limit its ability to spread to host cells. Summit identified 77 of them and ranked them based on how likely they were to bind to the spike.

The Next Step

The team will run the simulations on Summit again, using a more accurate model of the coronavirus’ spike that was published this month.

Experimental studies are required next to prove which chemicals work best.

“Our results don’t mean that we have found a cure or treatment for the coronavirus,” said Jeremy Smith, director of the University of Tennessee/Oak Ridge National Laboratory Center for Molecular Biophysics, in a statement.  But the findings could inform future studies.

“Only then will we know whether any of them exhibit the characteristics needed to mitigate this virus.”